Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta.
نویسندگان
چکیده
BACKGROUND Placental glucose transport mechanisms in early pregnancy are poorly understood. The aims of this study were to investigate the expression of glucose transporter (GLUT) isoforms 1, 3 and 4 in first trimester villous tissue, to assess the effects of insulin on glucose uptake and compare them with term. METHODS The expression of GLUT isoforms was investigated using immunohistochemistry, Western blot and reverse transcription (RT)-PCR in trophoblast tissue from terminations at 6-13 weeks gestation and term. The effects of insulin (300 ng/ml, 1 h) on glucose uptake were studied in villous fragments. RESULTS In the first trimester, GLUT1 and GLUT3 were present in the microvillous membrane and the cytotrophoblast, and GLUT4 in perinuclear membranes in the cytosol of the syncytiotrophoblast (ST). GLUT4 protein (48 kDa) and mRNA were identified in trophoblast homogenates. Whereas GLUT1 was expressed abundantly in term placenta, the expression of GLUT3 and 4 was markedly lower at term compared with first trimester. Insulin increased glucose uptake by 182% (n=6, P<0.05) in first trimester fragments, but not in term fragments. CONCLUSIONS The insulin-regulatable GLUT4 is expressed in the cytosol of first trimester ST compatible with a role for GLUT4 in placental glucose transport in early pregnancy. The placental expression pattern of GLUT isoforms in early pregnancy is distinct from that later in pregnancy.
منابع مشابه
The SNAT4 isoform of the system A amino acid transporter is expressed in human placenta
The system A amino acid transporter is encoded by three members of the Slc38 gene family giving rise to three subtypes: SNAT1, SNAT2, and SNAT4. SNAT2 is expressed ubiquitously in mammalian tissues, SNAT1 is predominantly expressed in heart, brain, and placenta while SNAT4 is reported to be expressed uniquely by the liver. In the placenta, system A has an essential role in the supply of neutral...
متن کاملSNAT4 isoform of system A amino acid transporter is expressed in human placenta.
The system A amino acid transporter is encoded by three members of the Slc38 gene family, giving rise to three subtypes: Na+-coupled neutral amino acid transporter (SNAT)1, SNAT2, and SNAT4. SNAT2 is expressed ubiquitously in mammalian tissues; SNAT1 is predominantly expressed in heart, brain, and placenta; and SNAT4 is reported to be expressed solely by the liver. In the placenta, system A has...
متن کاملHormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments.
Alterations in placental nutrient transfer have been implicated in fetal growth abnormalities. In pregnancies complicated by diabetes and accelerated fetal growth, upregulations of glucose transporter 1 (GLUT1) and amino acid transporter system A have been shown in the syncytiotrophoblast of term placenta. In contrast, intrauterine growth restriction is associated with a downregulation of place...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملThe SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane
Placental system A activity is important for the supply of neutral amino acids needed for fetal growth. There are three system A isoforms: SNAT1, SNAT2 and SNAT4, but the contribution of each to system A-mediated transport is unknown. Here, we have used immunohistochemistry to demonstrate that all three isoforms are present in the syncytiotrophoblast suggesting each plays a role in amino acid t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2005